
Requirements Toolbox™
Getting Started Guide

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Requirements Toolbox™ Getting Started Guide
© COPYRIGHT 2017–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2017 Online Only New for Version 1.0 (Release 2017b)
March 2018 Online Only Revised for Version 1.1 (Release 2018a)
September 2018 Online Only Revised for Version 1.2 (Release 2018b)
March 2019 Online Only Revised for Version 1.3 (Release 2019a)
September 2019 Online Only Revised for Version 1.4 (Release 2019b)
March 2020 Online only Revised for Version 1.5 (Release 2020a)
September 2020 Online only Revised for Version 1.6 (Release 2020b)
March 2021 Online only Revised for Version 1.7 (Release 2021a)
September 2021 Online only Revised for Version 1.8 (Release 2021b)
March 2022 Online only Revised for Version 2.0 (Release 2022a)
September 2022 Online only Revised for Version 2.1 (Release 2022b)
March 2023 Online only Revised for Version 2.2 (Release 2023a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Getting Started with Requirements Toolbox
1

Requirements Toolbox Product Description . 1-2

Work with Requirements in the Requirements Editor 1-3
Author Requirements in MATLAB or Simulink . 1-3

Link Test Cases to Requirements . 1-7
Link a Test Case to a Requirement Example . 1-7

Introduction to Requirements Toolbox . 1-13
Link Between Requirements and Implementation 1-13
Link Between Requirements and Simulink Test . 1-13
Additional Requirements Traceability Links . 1-14
Share and Reuse Requirements . 1-14

Access Frequently Used Features and Commands from the Requirements
Editor . 1-16

Access the Quick Access Toolbar . 1-16
Customize the Quick Access Toolbar . 1-16
Create and Run Favorite Commands . 1-17

Verify a MATLAB Algorithm by Using Requirements-Based Tests 1-19

iii

Contents

Getting Started with Requirements
Toolbox

• “Requirements Toolbox Product Description” on page 1-2
• “Work with Requirements in the Requirements Editor” on page 1-3
• “Link Test Cases to Requirements” on page 1-7
• “Introduction to Requirements Toolbox” on page 1-13
• “Access Frequently Used Features and Commands from the Requirements Editor” on page 1-16
• “Verify a MATLAB Algorithm by Using Requirements-Based Tests” on page 1-19

1

Requirements Toolbox Product Description
Author, link, and validate requirements for designs and tests

Requirements Toolbox™ lets you author, link, and validate requirements within MATLAB® or
Simulink®. You can create requirements using rich text with custom attributes or import them from
requirements management tools.

You can link requirements to MATLAB code, System Composer™ or Simulink models, and tests. The
toolbox analyzes the traceability to identify gaps in implementation or testing. The design
highlighting and traceability matrix summarize where links exist across multiple artifacts and guide
you to address any gaps. When requirements change, linked artifacts are highlighted, and you can
determine the upstream and downstream artifacts affected using a traceability diagram. Generated
code from Simulink designs includes code comments that document where requirements are
implemented to assist with reviews.

You can formalize requirements and analyze them for consistency, completeness, and correctness
using the Requirements Table. The Requirements Perspective enables you to view and manage
requirements together with design. When used with Simulink, you can create links to blocks with a
simple drag and drop.

Support for industry standards is available through IEC Certification Kit (for ISO 26262 and IEC
61508) and DO Qualification Kit (for DO-178).

1 Getting Started with Requirements Toolbox

1-2

https://www.mathworks.com/products/iec-61508.html
https://www.mathworks.com/products/do-178.html

Work with Requirements in the Requirements Editor
Requirements Toolbox enables you to author, organize, and edit requirements in the Requirements
Editor. When working in a Simulink model, you can use the Requirements Perspective to visualize
the links between requirements and the parts of a model. Using an integrated environment simplifies
linking requirements to the parts of your model that implement them.

This integrated environment has other advantages. For more information, see “Introduction to
Requirements Toolbox” on page 1-13.

Author Requirements in MATLAB or Simulink

In Requirements Toolbox, you organize your requirements in groups called requirement sets. In each
requirement set, you can create additional levels of hierarchy if you need to further describe a
requirement's details.

In this tutorial, you use the Requirements Editor to create a requirement set, organize related
requirements, and add requirements to the set. If you have Simulink, you can also use the
Requirements Perspective to author requirements without leaving the Simulink Editor. For more
information about using the Requirements Perspective, see “Link Blocks and Requirements”.

Suppose that you are writing requirements for a controller model of an automobile cruise control
system. You develop these requirements using your company’s numbering standard (R1, R2, and so
on).

ID and Description Rationale
R1: The maximum input throttle is 100% The maximum value of the throttle from the

acceleration pedal can be no greater than 100%.
R2: Cruise control has a speed operation range Cruise control has a minimum and maximum

operating speed.
R2.1: The vehicle speed must be at least 40 km/h The speed of the vehicle must be at least 40 km/h

for the cruise control system to engage.
R2.2: The vehicle speed cannot be greater than
100 km/h

The maximum operational speed of the cruise
control system for the vehicle is 100 km/h.

These requirements capture functionality modeled in a model called crs_controller.

1 Open the project that includes the model and supporting files. At the MATLAB command prompt,
enter:

slreqCCProjectStart
2 Open the requirement set crs_req in the Requirements Editor. At the command prompt,

enter:

slreq.open("crs_req")
3 The Requirements Editor displays the requirements arranged by requirement set. The project

has two requirement sets: crs_req_func_spec and crs_req.

 Work with Requirements in the Requirements Editor

1-3

4 Add a requirement set. From the Requirements Editor toolstrip, click New Requirement Set.
5 Save the requirement sets to external files. Save your requirement set to a writable location and

name it cruise_control_reqset.slreqx.
6 Add a requirement to your requirement set by selecting the requirement set and clicking Add

Requirement.
7 In the right pane, under Properties, enter the details for the requirement. Enter the details for

the requirement:

• Custom ID: R1
• Summary: Max input throttle %
• Description: The maximum input throttle is 100%.

If you do not specify a custom ID, the Requirements Editor numbers requirements in order.
Custom IDs enable you to use your company standards for labeling requirements and to set the
numeric order. (Custom IDs cannot contain a # character.) You can also use an ID to help locate a
requirement when searching. Keywords aid in searching for a requirement.

8 Create the requirement R2. Click Add Requirement. Enter the details for the requirement:

• Custom ID: R2
• Summary: Cruise control speed operation range
• Description: Cruise control has a minimum and maximum operating speed.

9 Create child requirements for R2 by selecting R2 and clicking Add Requirement > Add Child
Requirement. Enter the details for the requirement:

• Custom ID: R2.1
• Summary: Minimum vehicle speed
• Description: The speed of the vehicle must be at least 40 km/h for the cruise control system

to engage.

1 Getting Started with Requirements Toolbox

1-4

Repeat this step to add other child requirements to R2.

You can rearrange the hierarchy by using Promote Requirement or Demote Requirement.

Author and Edit Requirements Content by Using Microsoft Word

To author and edit the Description and Rationale fields of your requirements, open Microsoft®

Word from within the Requirements Editor or the Requirements Perspective View.

Note This functionality is available only on Microsoft Windows® platforms.

Using Microsoft Word to edit rich text requirements enables you to:

• Spell-check requirements content.
• Resize images.
• Insert and edit equations.
• Insert and edit tables.

On the Edit field toolbar, in either the Description or Rationale fields, click the icon. Save the
changes to your requirements content within Microsoft Word to see them reflected in Requirements
Toolbox.

When you use Microsoft Word to edit requirements content, you cannot edit requirements in the
built-in editor.

Customize Requirements Browser View

You can view or hide columns in the Requirements Editor when you click Columns > Select
Attributes. Add, remove, and reorder attribute columns in the Column Selector. The view
configuration is saved across sessions. You can export view settings to a MAT-file by using the
slreq.exportViewSettings function and import them by using the
slreq.importViewSettings function. You can reset view configurations by using the
slreq.resetViewSettings function.

Filter Requirements Content

You can search requirements content by clicking Search. You can find specific requirements within
loaded requirement sets based on requirement attributes and descriptions.

 Work with Requirements in the Requirements Editor

1-5

Specify Filter Text Strings — As you enter text in the Search text box, the Requirements Browser
performs a dynamic search and displays the results. The search operation applies only to attributes
you choose to display in the Requirements Browser.

The text strings you enter must be consistent with the guidelines described in the following sections.

Case Sensitivity — By default, the Requirements Browser ignores case as it filters.

If you want the Requirements Browser to respect case sensitivity, put that text string in quotation
marks.

Specify Attributes and Attribute Values — To restrict the filtering to requirements with a specific
attribute, type the attribute name, followed by a colon. The Requirements Browser displays only the
requirements that have that attribute.

To filter for requirements for which a specific attribute has a specific value, type the attribute name,
followed by a colon (:), then the value. For example, to filter the contents to display only the
requirements where the Summary attribute has a value that includes Aircraft, enter Summary:
Aircraft (alternatively, you could put the whole string in quotation marks to enforce case
sensitivity).

Wildcards and MATLAB Expressions Are Not Supported — The Requirements Browser does not
recognize wildcard characters, such as *. For example, searching fuel* returns no results, even if
requirements contain the text string fuel.

Also, if you specify a MATLAB expression in the Search text box, the Requirements Browser
interprets that string as literal text, not as a MATLAB expression.

See Also
Requirements Editor

More About
• “Link Blocks and Requirements”
• “Introduction to Requirements Toolbox” on page 1-13
• “Create and Store Links”
• “Define Requirements Hierarchy”

1 Getting Started with Requirements Toolbox

1-6

Link Test Cases to Requirements
If you have Simulink Test™ and Requirements Toolbox, you can link your requirements to test cases
in the Test Manager. Linking requirements to tests allows you to verify that the implementation of the
requirement behaves as expected. You can use the requirement verification status to track
verification progress. For more information, see “Review Requirements Verification Status”.

Link a Test Case to a Requirement Example

This example shows how to link a test case to a requirement associated with a controller model of an
automobile cruise control system. After you run the tests, you include the results in the Requirements
Editor.

To link a requirement to a test case, open the project, CruiseRequirementsExample. Then, open
the crs_controller model.

openProject("CruiseRequirementsExample");
open_system("models/crs_controller");

Load the test files that contain the tests you want to link.

 Link Test Cases to Requirements

1-7

1 From the model, open the Test Manager. In the Apps tab, click Simulink Test. In the Tests tab,
click Simulink Test Manager.

2 In the Test Manager, open the DriverSwRequest_Tests.mldatx and
crs_controller_tests.mldatx test files. In the File section, click Open. Load the test files
in the CruiseRequirementsExample\tests folder.

The test files contain the test cases for several of the requirements in the crs_controller model.
Most of these test cases already link to requirements.

In this example, you link the Increment button hold test to a requirement. In the left pane, click
DriverSWRequest_Tests > Unit test for DriverSwRequest > Increment button hold. In the
model, open the Requirements Editor. In the Apps tab, in the Apps section, click Requirements
Editor. Click Show Requirements. The Requirements Editor displays two requirement sets,
crs_req_func_spec, and crs_req_safety_spec.

1 Getting Started with Requirements Toolbox

1-8

In this example, you do not test the requirements in crs_req_safety_spec, and you must load
another requirement set to load the tested requirements. To close the crs_req_safety_spec
requirement set, select crs_req_safety_spec and, in the File section, click Close. In the File
section, click Open. In CruiseRequirementsExample\documents, open the file
crs_req.slreqx. The Requirements Editor updates the loaded requirements.

 Link Test Cases to Requirements

1-9

Link the requirement to the test case. Expand the crs_req_func_spec requirement set and expand
the requirement with the index 1. Select the requirement with the index 1.3. In the Links section,
click Add Link > Link from Selected Test Case. The link to the test case appears in the right pane,
under Links.

1 Getting Started with Requirements Toolbox

1-10

You can view verification information for other requirements by selecting each requirement.

Run the linked tests. In the Test Manager, select the top node in the test hierarchy in the Test
Browser pane that corresponds to each test file and click Run. The Results and Artifacts pane
shows that 7 tests passed and 1 test failed in the DriverSwRequest_Tests test file, and that 4 of
the tests passed in the crs_controller_tests test file. Expand the results of each test run, test
file, and test suite. In the test results for DriverSwRequest_Tests, the Cancel button test failed.

To view the verification status associated with the requirements linked to the tests in the
Requirements Editor, in the View section, click Columns > Verification Status. Some requirements
do not have tests, and some requirements are fully verified. The bar in the Verified column shows the
proportion of child requirements that have links to verification. The color of the display indicates the
proportion of tests that have passed, failed, or not run.

 Link Test Cases to Requirements

1-11

In this example, the verification status shows that the test that you linked to the requirement 1.3
passed, and the test linked to Cancel Switch Detection failed. Some requirements are partially
verified because the child requirements are not yet verified, such as requirement 1.8. To view a
summary of details about the child requirements, point to the verification status bar of the parent
requirement. Other requirements are unverified because they are not linked to a test case.

See Also

More About
• “Create and Store Links”
• “Link Test Cases to Requirements Documents”
• “Work with Requirements in the Requirements Editor” on page 1-3

1 Getting Started with Requirements Toolbox

1-12

Introduction to Requirements Toolbox
In this section...
“Link Between Requirements and Implementation” on page 1-13
“Link Between Requirements and Simulink Test” on page 1-13
“Additional Requirements Traceability Links” on page 1-14
“Share and Reuse Requirements” on page 1-14

Requirements Toolbox integrates requirements authoring and management with your modeling
environment. You can author requirements in Simulink in the Requirements Editor, where you can
organize and manage them. You can also import them from Microsoft Word or Excel® on some
platforms. For details, see “Import Requirements from Third-Party Applications”.

Link Between Requirements and Implementation
You can link from requirements to the Simulink blocks or Stateflow® objects that implement them.
The connection is bidirectional, meaning that you can locate a requirement from a model element and
a model element from a requirement.

You can:

• View implementation progress, including identifying missing implementations.
• React to requirement changes by updating model elements as requirements change, and clarifying

requirements as your model evolves. You can find changed requirements by using a single
command.

• Confirm that model changes conform to the associated requirement.

For more information, see “Create and Store Links”.

Link Between Requirements and Simulink Test
If you have Simulink Test, you can link between requirements and tests that verify them. You can
associate a requirement or set of requirements with tests that you create in Test Manager. When you
run a test in Test Manager that you linked to a requirement, you can see the pass/fail results in the
Requirements Editor.

Because you can track test results in Requirements Toolbox, you can see the progress toward
verification. The verification status also helps you to identify missing information and clusters of
requirements associated with failing tests. You can use this information to understand the impact and
complexity of those requirements.

 Introduction to Requirements Toolbox

1-13

For more information, see “Link Test Cases to Requirements Documents”.

Additional Requirements Traceability Links
With Requirements Toolbox, you can create several other types of traceability links and establish
many relationships within your model and to external documents. You can create these types of
traceability links:

• Implements, in which a design element implements a requirement
• Verifies, in which a test case verifies a requirement
• Related to, in which you establish a trace relationship between a model element and a

requirement
• Derives, in which a requirement is derived from another requirement
• Refines, in which one requirement refines another requirement

You can link between other types of documents, for example, HTML or DOORS® items, and
requirements and to additional model elements such as dictionary objects.

For more information, see “Create and Store Links”.

Share and Reuse Requirements
You save requirements files separately from your model files. You can then reference requirement
files from multiple models, and each model can reference multiple requirement files. Saving
requirements in separate files lets you modularize common requirements across models while also

1 Getting Started with Requirements Toolbox

1-14

managing requirements that are model-specific. This approach minimizes potential for copy-and-
paste errors and keeps the requirements in sync across the models that share them.

You can compare requirements files (.slreqx files) by using the MATLAB file comparison tool. This
tool helps you to identify differences in similar requirement sets. For more information, see “Compare
Requirement Sets”.

You can also include requirements files in Projects. When you open a project, load requirement sets
into the Requirements Editor from the project explorer. For more information, see “Requirements-
Based Development in Projects”.

Another way to share information about requirements is to generate a report that includes the
requirements definition, links, implementation details, verification status, and so on. For more
information, see “Generate Requirements Reports Using Simulink”.

See Also

More About
• “Work with Requirements in the Requirements Editor” on page 1-3
• “Import Requirements from Third-Party Applications”
• “Link Test Cases to Requirements” on page 1-7

 Introduction to Requirements Toolbox

1-15

Access Frequently Used Features and Commands from the
Requirements Editor

You can access your most frequently used features and commands in the Requirements Editor by
using the quick access toolbar. You can customize the toolbar by adding actions from the toolstrip,
reorganizing the toolbar buttons, and showing the button labels. You can also add commands that run
MATLAB language statements to the quick access toolbar.

The quick access toolbar preferences persist across MATLAB sessions. The toolbar is always visible,
even if the toolstrip is minimized.

Access the Quick Access Toolbar
Open the Requirements Editor. For more information, see Requirements Editor.

You can also add the Requirements Editor to the MATLAB or Simulink quick access toolbars from
the Apps tab by right-clicking the Requirements Editor app and selecting Add to Quick Access
Toolbar. For more information, see “Customize MATLAB Toolbars” and “Access Frequently Used
Features and Commands in Simulink” (Simulink).

The quick access toolbar is in at the top right corner of the Requirements Editor.

The default buttons allow you to copy, cut, and paste requirements, referenced requirements, and

justifications. You can create and run favorite commands by clicking the Favorites icon to open
the Favorite Commands menu. You can also access the Requirements Toolbox documentation by

clicking the help button .

Customize the Quick Access Toolbar
You can customize the quick access toolbar by adding and removing actions, rearranging the buttons,
and showing the button labels. You can also restore the default toolbar buttons.

Add and Remove Actions

You can add actions to the quick access toolbar by right-clicking a toolstrip button and selecting Add
to Quick Access Toolbar. You can also add favorite commands to the toolbar by using the Favorite
Commands menu.

You can remove non-default actions, including favorite commands, by right-clicking the button in the
toolbar and selecting Remove from Quick Access Toolbar.

Rearrange Buttons

You can rearrange the quick access toolbar buttons by clicking and dragging the buttons.

A partition separates the default and non-default toolbar buttons. You cannot move buttons across the
partition.

1 Getting Started with Requirements Toolbox

1-16

Show and Hide Button Labels

Each quick access toolbar button has a label that describes the action it performs. You can show the
label for a button by right-clicking the toolbar button and selecting Show Label.

You can hide the label by right-clicking the button and selecting Hide Label.

Restore the Default Toolbar

The default quick access toolbar contains actions to copy, cut, paste, open the Favorite Commands
menu, and access the documentation.

You can restore the toolbar to its default state by right-clicking in the toolbar and selecting Restore
Defaults.

Restoring the default toolbar:

• Removes non-default action buttons, including favorite commands
• Arranges the default buttons to their default order
• Hides button labels

Create and Run Favorite Commands
You can create favorite commands to run a group of MATLAB language statements by using the
Favorite Commands menu.

1
In the quick access toolbar, click the Favorites icon .

2 In the Favorite Commands menu, click New Favorite.
3 In the Favorite Command Editor, enter a name for the command in the Label field.

 Access Frequently Used Features and Commands from the Requirements Editor

1-17

4 Select the command type from the Type list. Scripts execute in the base workspace, while
functions execute in a limited scope. For more information, see “Base and Function Workspaces”.

5 Enter your MATLAB code in the Code field.
6 Select the category to place the command in from the Category list. The Favorite Commands

category is selected by default.
7 Choose an icon for the command by selecting from the Icon list. You can use a custom icon by

setting Icon to Specify custom icon.
8 To add the command directly to the quick access toolbar, select Add to quick access toolbar.

To show the label for the toolbar button, select Show label on quick access toolbar.
9 Click OK.

You can run the command by clicking the Favorites icon and clicking the command or by clicking
the icon in the quick access toolbar.

Add a Favorite Command Category

You can create categories to organize your favorite commands into groups. To create a category, in
the Favorite Command Editor, click New Category. Enter a name for the category in the Label field,
then click OK.

Edit, Delete, and Organize Favorite Commands

You can edit, delete, and organize existing favorite commands and categories.

To edit a favorite command or category, right-click the command or category and select Edit
Favorite or Edit Category. Make changes in the editor, then click OK.

To delete a favorite command or category, right-click the command or category and select Delete
Favorite or Delete Category. Deleting a category deletes all favorite commands in the category.

See Also

More About
• “Author Requirements in MATLAB or Simulink”
• “Customize MATLAB Toolbars”
• “Access Frequently Used Features and Commands in Simulink” (Simulink)

1 Getting Started with Requirements Toolbox

1-18

Verify a MATLAB Algorithm by Using Requirements-Based Tests

This example shows how to verify a MATLAB® algorithm by creating verification links from MATLAB
code lines in functions and tests to requirements. This example uses a project that contains an
algorithm to calculate the shortest path between two nodes on a graph.

Open the project.

slreqShortestPathProjectStart

Examine the Project Artifacts

The project contains:

• Requirement sets for functional and test requirements, located in the requirements folder
• A MATLAB algorithm, located in the src folder
• MATLAB unit tests, located in the tests folder
• Links from MATLAB code lines to requirements, stored .slmx files located in the src and tests

folders
• Scripts to automate project analysis, located in the scripts folder

Open the Functional Requirement Set

The shortest_path_func_reqs requirement set captures the functional behavior that the
shortest_path function requires. The requirements describe the nominal behavior and the
expected behavior for invalid conditions, such as when the inputs to the function are not valid. Open
the requirement set in the Requirements Editor.

funcReqs = slreq.open("shortest_path_func_reqs");

Use the Shortest Path Function

The shortest_path function tests the validity of the inputs to the function and then uses the
Djikstra algorithm to calculate the number of edges in the shortest path between two nodes on a
graph. The inputs to the function are an adjacency matrix that represents a graph, the starting node,
and the ending node. For example, consider this adjacency matrix that represents a graph with six
nodes.

A = [0 1 0 0 1 0;
 1 0 1 0 0 0;
 0 1 0 1 0 0;
 0 0 1 0 1 1;
 1 0 0 1 0 0;
 0 0 0 1 0 0];

Create a graph from the matrix and plot it.

G = graph(A);
plot(G,EdgeLabel=G.Edges.Weight)

 Verify a MATLAB Algorithm by Using Requirements-Based Tests

1-19

Calculate the number of edges in the shortest path between nodes 1 and 6.

pathLength = shortest_path(A,1,6)

pathLength = 3

Open the Test Requirement Set

The shortest_path_tests_reqs requirement set contains test requirements that describe the
functional behavior that must be tested by a test case. The test requirements are derived from the
functional requirements. There are test requirements for the nominal behavior and for the invalid
conditions. Open the requirement set in the Requirements Editor.

testReqs = slreq.open("shortest_path_tests_reqs");

The class-based MATLAB unit tests in graph_unit_tests implement the test cases described in
shortest_path_tests_reqs. The class contains test methods based on the test requirements from
shortest_path_tests_reqs. The class also contains the verify_path_length method, which
the test cases use as a qualification method to verify that the expected and actual results are equal.
The class also contains static methods that create adjacency matrices for the test cases.

View the Verification Status

To view the verification status, in the Requirements Editor toolstrip, in the View section, click
Columns and select Verification Status. Three of the functional requirements and one test
requirement are missing verification links. The verification status is yellow for each requirement,
which indicates that the linked tests have not run.

1 Getting Started with Requirements Toolbox

1-20

Run the tests and update the verification status for the requirement sets by using the runTests
method.

status1 = runTests(funcReqs);

Running graph_unit_tests
..........
Done graph_unit_tests

status2 = runTests(testReqs);

Running graph_unit_tests
..........
Done graph_unit_tests

 Verify a MATLAB Algorithm by Using Requirements-Based Tests

1-21

The verification status is green to indicate that the linked tests passed. However, some of the
requirements do not have links to tests.

Identify Traceability Gaps in the Project

The functional and test requirements are linked to code lines in the shortest_path and
graph_unit_tests files, but the traceability is not complete. Use a traceability matrix to identify
requirements that are not linked to tests and to create links to make the requirements fully traceable.

Find the Missing Links with a Traceability Matrix

Create a traceability matrix for both requirement sets with the requirements on the top and the unit
tests on the left. For more information about traceability matrices, see “Track Requirement Links
with a Traceability Matrix”

mtxOpts = slreq.getTraceabilityMatrixOptions;
mtxOpts.topArtifacts = {'shortest_path_func_reqs.slreqx','shortest_path_tests_reqs.slreqx'};
mtxOpts.leftArtifacts = {'graph_unit_tests'};
slreq.generateTraceabilityMatrix(mtxOpts)

In the Filter Panel, in the Top section, filter the matrix to show only the functional requirements not
linked to tests by clicking:

• Top > Link > Missing Links
• Top > Type > Functional

In the Left section, show only the test functions in the graph_unit_tests file by clicking:

• Left > Type > Function
• Left > Attributes > Test

Click Highlight Missing Links in the toolstrip.

1 Getting Started with Requirements Toolbox

1-22

The Traceability Matrix window shows the three functional requirements and one test requirement
that are missing verification links.

Create Verification Links for Requirements

The test requirement 2.1.3, Test for a graph that is a tree, is not linked to a test. A tree is
a graph in which any two nodes are only connected by one path.

The test case check_invalid_start_1 tests a tree graph by using the graph_straight_seq
static method to create the adjacency matrix. Use the graph_straight_seq method to view the
tree graph.

A = graph_unit_tests.graph_straight_seq;
G = graph(A);
plot(G,EdgeLabel=G.Edges.Weight)

 Verify a MATLAB Algorithm by Using Requirements-Based Tests

1-23

Create a link from the Test for a graph that is a tree requirement to the
check_invalid_start_1 test case by using the traceability matrix you previously generated.

slreq.generateTraceabilityMatrix(mtxOpts)

Click the cell that corresponds to the requirement and the test and select Create. In the Create Link
dialog box, click Create.

1 Getting Started with Requirements Toolbox

1-24

Update the verification status in the Requirements Editor by running the tests linked to the test
requirements. The check_invalid_start_1 test verifies the Test for a graph that is a
tree requirement.

status3 = runTests(testReqs);

Running graph_unit_tests
..........
Done graph_unit_tests

Additionally, three functional requirements do not have links to tests:

• Requirement 2.2.1: Returns -9 for invalid adjacency matrices
• Requirement 2.2.2: Returns -19 if the start node is encoded incorrectly
• Requirement 2.2.3: Returns -29 if end node is encoded incorrectly

There is a traceability gap for these requirements. You cannot fill this gap by creating links to tests
because there are no tests that verify these requirements.

Fix Coverage and Traceability Gaps by Authoring Tests

The three functional requirements that do not have links to tests do have links to lines of code in the
shortest_path function. Run the tests with coverage to determine if those lines of code in the
shortest_path function are covered by tests.

Run Tests with Coverage

Use the RunTestsWithCoverage script to run the tests with function and statement coverage and
view the coverage in a report. For more information, see “Collect Statement and Function Coverage
Metrics for MATLAB Source Code”.

 Verify a MATLAB Algorithm by Using Requirements-Based Tests

1-25

RunTestsWithCoverage

Running graph_unit_tests
..........
Done graph_unit_tests

Code coverage report has been saved to:
 C:\Users\jdoe\MATLAB\Projects\examples\ShortestPath\coverageReport\index.html

Open the coverage report. The error code statements on lines 20, 25, and 30 are not covered by tests.

Note that the coverage gap for these code lines and the traceability gap for requirements 2.2.1, 2.2.2,
and 2.2.3 refer to the same error codes. You can close the coverage and traceability gaps
simultaneously by authoring tests for these lines of code and creating links to the requirements.

Improve Coverage by Authoring New Tests

Create tests that improve the coverage for the tests and verify requirements 2.2.1, 2.2.2, and 2.2.2.
Open the graph_unit_tests test file.

open("graph_unit_tests.m");

These functions test the three error codes. Copy and paste the code in line 4, in the test methods
section of the graph_unit_tests file, then save the file.

1 Getting Started with Requirements Toolbox

1-26

function check_invalid_nonsquare(testCase)
 adjMatrix = zeros(2,3);
 startIdx = 1;
 endIdx = 1;
 expOut = -9;
 verify_path_length(testCase, adjMatrix, startIdx, endIdx, expOut, ...
 'Graph is not square');
end

function check_invalid_entry(testCase)
 adjMatrix = 2*ones(4,4);
 startIdx = 1;
 endIdx = 1;
 expOut = -9;
 verify_path_length(testCase, adjMatrix, startIdx, endIdx, expOut, ...
 'Adjacency matrix is not valid');
end

function check_invalid_noninteger_startnode(testCase)
 adjMatrix = zeros(4,4);
 startIdx = 1.2;
 endIdx = 1;
 expOut = -19;
 verify_path_length(testCase, adjMatrix, startIdx, endIdx, expOut, ...
 'Start node is not an integer');
end

function check_invalid_noninteger_endnode(testCase)
 adjMatrix = zeros(4,4);
 startIdx = 1;
 endIdx = 2.2;
 expOut = -29;
 verify_path_length(testCase, adjMatrix, startIdx, endIdx, expOut, ...
 'End node is not an integer');
end

Rerun the tests with coverage and open the coverage report.

RunTestsWithCoverage

Running graph_unit_tests
..........
Done graph_unit_tests

Code coverage report has been saved to:
 C:\Users\jdoe\MATLAB\Projects\examples\ShortestPath\coverageReport\index.html

The tests now cover the error code statements.

 Verify a MATLAB Algorithm by Using Requirements-Based Tests

1-27

However, there is a statement on line 97 that the tests do not cover. The conditions that require the
tests to cover the statement on line 97 also cause the return on line 87 to execute, which means that
the statement on 97 is not reachable and is dead logic.

Fix Requirement Traceability Gaps

Regenerate the traceability matrix, apply the same filters from before, then click Highlight Missing
Links in the toolstrip.

slreq.generateTraceabilityMatrix(mtxOpts)

• Top > Link > Missing Links
• Top > Type > Functional
• Left > Type > Function
• Left > Attributes > Test

Create links between the error code requirements and the new tests.

1 Getting Started with Requirements Toolbox

1-28

Update the verification status in the Requirements Editor by re-running the tests linked to both
requirement sets.

status4 = runTests(funcReqs);

Running graph_unit_tests
..........
Done graph_unit_tests

status5 = runTests(testReqs);

Running graph_unit_tests
..........
Done graph_unit_tests

All requirements have links to tests and all tests pass.

 Verify a MATLAB Algorithm by Using Requirements-Based Tests

1-29

Trace Requirements in Generated Code

Use Embedded Coder® to generate code from the shortest_path algorithm and include
requirements comments that allow you to trace the requirements in the generated code. For more
information, see “Requirements Traceability for Code Generated from MATLAB Code”.

Create a code configuration object to generate code with a LIB build type.

cfg = coder.config("lib","ecoder",true);

Enable the code configuration parameter to include requirements comments in the generated code.

cfg.ReqsInCode = true;

Use coder.typeof (MATLAB Coder) to define a variable-sized double array with a maximum size of
100x100 and a scalar double to use as inputs in the generated code.

1 Getting Started with Requirements Toolbox

1-30

mtxType = coder.typeof(ones(100,100),[],1);
scalarDblType = coder.typeof(1);

Generate C code from the shortest_path algorithm with the specified code configuration
parameters and input types. Create a code generation report and launch the report.

codegen shortest_path -config cfg -args {mtxType, scalarDblType, scalarDblType} -launchreport

Code generation successful: View report

The shortest_path.c file contains comments with the summary of the linked requirement, the full
file path of the shortest_path.m file, and the linked code lines.

See Also
runTests | codegen | coder.runTest

More About
• “Review Requirements Verification Status”
• “Requirements Traceability for Code Generated from MATLAB Code”
• “Author Class-Based Unit Tests in MATLAB”
• “Collect Statement and Function Coverage Metrics for MATLAB Source Code”

 Verify a MATLAB Algorithm by Using Requirements-Based Tests

1-31

	Getting Started with Requirements Toolbox
	Requirements Toolbox Product Description
	Work with Requirements in the Requirements Editor
	Author Requirements in MATLAB or Simulink

	Link Test Cases to Requirements
	Link a Test Case to a Requirement Example

	Introduction to Requirements Toolbox
	Link Between Requirements and Implementation
	Link Between Requirements and Simulink Test
	Additional Requirements Traceability Links
	Share and Reuse Requirements

	Access Frequently Used Features and Commands from the Requirements Editor
	Access the Quick Access Toolbar
	Customize the Quick Access Toolbar
	Create and Run Favorite Commands

	Verify a MATLAB Algorithm by Using Requirements-Based Tests

